import pandas as pd
import numpy as np
import sklearn
import pickle
import time
import datetime
import warnings
'ignore') warnings.filterwarnings(
imports
%run ../function_proposed_gcn.py
with open('../fraudTrain.pkl', 'rb') as file:
= pickle.load(file) fraudTrain
df50_train, df[::10]: test
= try_4(fraudTrain, 10, 10973.519989002007, 0.501)
df_results
= datetime.datetime.fromtimestamp(time.time()).strftime('%Y%m%d-%H%M%S')
ymdhms f'./results/{ymdhms}-proposed.csv',index=False) df_results.to_csv(
df_results
model | time | acc | pre | rec | f1 | auc | graph_based | method | throw_rate | train_size | train_cols | train_frate | test_size | test_frate | hyper_params | theta | gamma | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | GCN | None | 0.958344 | 0.10118 | 0.821918 | 0.18018 | 0.911725 | True | Proposed | 0.131927 | 9009 | amt | 0.499611 | 26215 | 0.005569 | None | 10973.519989 | 0.501 |
df_results
model | time | acc | pre | rec | f1 | auc | graph_based | method | throw_rate | train_size | train_cols | train_frate | test_size | test_frate | hyper_params | theta | gamma | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | GCN | None | 0.958344 | 0.101180 | 0.821918 | 0.180180 | 0.911725 | True | Proposed | 0.131927 | 9009 | amt | 0.499611 | 26215 | 0.005569 | None | 10973.519989 | 0.501 |
1 | GCN | None | 0.956971 | 0.104098 | 0.783951 | 0.183792 | 0.889444 | True | Proposed | 0.132637 | 9009 | amt | 0.500611 | 26215 | 0.006180 | None | 10973.519989 | 0.600 |
2 | GCN | None | 0.966088 | 0.103556 | 0.755725 | 0.182153 | 0.866406 | True | Proposed | 0.131672 | 9009 | amt | 0.500278 | 26215 | 0.004997 | None | 10973.519989 | 0.700 |
3 | GCN | None | 0.953805 | 0.087529 | 0.773973 | 0.157272 | 0.859619 | True | Proposed | 0.131530 | 9009 | amt | 0.498057 | 26215 | 0.005569 | None | 10973.519989 | 0.800 |
4 | GCN | None | 0.950067 | 0.092659 | 0.783133 | 0.165711 | 0.860542 | True | Proposed | 0.132211 | 9009 | amt | 0.498501 | 26215 | 0.006332 | None | 10973.519989 | 0.900 |
= try_4(fraudTrain, 10, 10973, 0.1)
df_results = try_4(fraudTrain, 10, 10973, 0.2, prev_results=df_results)
df_results = try_4(fraudTrain, 10, 10973, 0.3, prev_results=df_results)
df_results = try_4(fraudTrain, 10, 10973, 0.4, prev_results=df_results)
df_results = try_4(fraudTrain, 10, 10973, 0.5, prev_results=df_results)
df_results = try_4(fraudTrain, 10, 10973, 0.6, prev_results=df_results)
df_results = try_4(fraudTrain, 10, 10973, 0.7, prev_results=df_results)
df_results = try_4(fraudTrain, 10, 10973, 0.8, prev_results=df_results)
df_results = try_4(fraudTrain, 10, 10973, 0.9, prev_results=df_results)
df_results
= datetime.datetime.fromtimestamp(time.time()).strftime('%Y%m%d-%H%M%S')
dhms f'../results/{ymdhms}-proposed.csv',index=False)
df_results.to_csv(
df_results
NameError: name 'ymdhms' is not defined
= datetime.datetime.fromtimestamp(time.time()).strftime('%Y%m%d-%H%M%S')
ymdhms f'../results/{ymdhms}-proposed.csv',index=False)
df_results.to_csv(
df_results
model | time | acc | pre | rec | f1 | auc | graph_based | method | throw_rate | train_size | train_cols | train_frate | test_size | test_frate | hyper_params | theta | gamma | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | GCN | None | 0.953805 | 0.106222 | 0.809249 | 0.187793 | 0.931387 | True | Proposed | 0.133063 | 9009 | amt | 0.501055 | 26215 | 0.006599 | None | 10973 | 0.1 |
1 | GCN | None | 0.966012 | 0.137275 | 0.820359 | 0.235193 | 0.926498 | True | Proposed | 0.132750 | 9009 | amt | 0.500500 | 26215 | 0.006370 | None | 10973 | 0.2 |
2 | GCN | None | 0.960633 | 0.107365 | 0.823129 | 0.189953 | 0.907009 | True | Proposed | 0.131785 | 9009 | amt | 0.498945 | 26215 | 0.005607 | None | 10973 | 0.3 |
3 | GCN | None | 0.964372 | 0.118744 | 0.770701 | 0.205782 | 0.895444 | True | Proposed | 0.132097 | 9009 | amt | 0.499056 | 26215 | 0.005989 | None | 10973 | 0.4 |
4 | GCN | None | 0.953996 | 0.096228 | 0.796178 | 0.171703 | 0.885994 | True | Proposed | 0.133176 | 9009 | amt | 0.503275 | 26215 | 0.005989 | None | 10973 | 0.5 |
5 | GCN | None | 0.945833 | 0.080795 | 0.792208 | 0.146635 | 0.885693 | True | Proposed | 0.133063 | 9009 | amt | 0.503164 | 26215 | 0.005874 | None | 10973 | 0.6 |
6 | GCN | None | 0.955979 | 0.095857 | 0.742138 | 0.169784 | 0.865008 | True | Proposed | 0.132949 | 9009 | amt | 0.502165 | 26215 | 0.006065 | None | 10973 | 0.7 |
7 | GCN | None | 0.957353 | 0.097908 | 0.745223 | 0.173077 | 0.864288 | True | Proposed | 0.132438 | 9009 | amt | 0.500389 | 26215 | 0.005989 | None | 10973 | 0.8 |
8 | GCN | None | 0.949189 | 0.085271 | 0.780645 | 0.153748 | 0.848454 | True | Proposed | 0.132268 | 9009 | amt | 0.499944 | 26215 | 0.005913 | None | 10973 | 0.9 |
= try_4(fraudTrain, 10, 10000, 0.3)
df_results = try_4(fraudTrain, 10, 9800, 0.3, prev_results=df_results)
df_results = try_4(fraudTrain, 10, 9600, 0.3, prev_results=df_results)
df_results = try_4(fraudTrain, 10, 9400, 0.3, prev_results=df_results)
df_results = try_4(fraudTrain, 10, 9200, 0.3, prev_results=df_results)
df_results = try_4(fraudTrain, 10, 9000, 0.3, prev_results=df_results)
df_results = try_4(fraudTrain, 10, 8800, 0.3, prev_results=df_results)
df_results = try_4(fraudTrain, 10, 8600, 0.3, prev_results=df_results)
df_results = try_4(fraudTrain, 10, 8400, 0.3, prev_results=df_results)
df_results = try_4(fraudTrain, 10, 8200, 0.3, prev_results=df_results)
df_results = try_4(fraudTrain, 10, 8000, 0.3, prev_results=df_results)
df_results
= datetime.datetime.fromtimestamp(time.time()).strftime('%Y%m%d-%H%M%S')
ymdhms f'../results/{ymdhms}-proposed.csv',index=False)
df_results.to_csv(
df_results
model | time | acc | pre | rec | f1 | auc | graph_based | method | throw_rate | train_size | train_cols | train_frate | test_size | test_frate | hyper_params | theta | gamma | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | GCN | None | 0.957047 | 0.095789 | 0.789116 | 0.170839 | 0.898871 | True | Proposed | 0.132438 | 9009 | amt | 0.501499 | 26215 | 0.005607 | None | 10000 | 0.3 |
1 | GCN | None | 0.963151 | 0.115238 | 0.765823 | 0.200331 | 0.918913 | True | Proposed | 0.132665 | 9009 | amt | 0.501166 | 26215 | 0.006027 | None | 9800 | 0.3 |
2 | GCN | None | 0.953538 | 0.097212 | 0.865772 | 0.174797 | 0.925368 | True | Proposed | 0.131161 | 9009 | amt | 0.496281 | 26215 | 0.005684 | None | 9600 | 0.3 |
3 | GCN | None | 0.955484 | 0.095770 | 0.779221 | 0.170576 | 0.891125 | True | Proposed | 0.133375 | 9009 | amt | 0.504385 | 26215 | 0.005874 | None | 9400 | 0.3 |
4 | GCN | None | 0.962731 | 0.121771 | 0.840764 | 0.212732 | 0.919305 | True | Proposed | 0.132268 | 9009 | amt | 0.499722 | 26215 | 0.005989 | None | 9200 | 0.3 |
5 | GCN | None | 0.938051 | 0.075014 | 0.860927 | 0.138004 | 0.917114 | True | Proposed | 0.133034 | 9009 | amt | 0.503386 | 26215 | 0.005760 | None | 9000 | 0.3 |
6 | GCN | None | 0.958497 | 0.087674 | 0.731884 | 0.156589 | 0.859628 | True | Proposed | 0.132239 | 9009 | amt | 0.501721 | 26215 | 0.005264 | None | 8800 | 0.3 |
7 | GCN | None | 0.961015 | 0.106460 | 0.745223 | 0.186306 | 0.891528 | True | Proposed | 0.132523 | 9009 | amt | 0.500722 | 26215 | 0.005989 | None | 8600 | 0.3 |
8 | GCN | None | 0.955369 | 0.089457 | 0.788732 | 0.160689 | 0.913984 | True | Proposed | 0.133034 | 9009 | amt | 0.504385 | 26215 | 0.005417 | None | 8400 | 0.3 |
9 | GCN | None | 0.949723 | 0.076703 | 0.781022 | 0.139687 | 0.899420 | True | Proposed | 0.132154 | 9009 | amt | 0.501499 | 26215 | 0.005226 | None | 8200 | 0.3 |
10 | GCN | None | 0.947168 | 0.078338 | 0.782313 | 0.142415 | 0.885496 | True | Proposed | 0.131019 | 9009 | amt | 0.495948 | 26215 | 0.005607 | None | 8000 | 0.3 |
= try_4(fraudTrain, 10, 9600, 0.2)
df_results = try_4(fraudTrain, 10, 9600, 0.18, prev_results=df_results)
df_results = try_4(fraudTrain, 10, 9600, 0.16, prev_results=df_results)
df_results = try_4(fraudTrain, 10, 9600, 0.14, prev_results=df_results)
df_results = try_4(fraudTrain, 10, 9600, 0.12, prev_results=df_results)
df_results = try_4(fraudTrain, 10, 9600, 0.1, prev_results=df_results)
df_results = try_4(fraudTrain, 10, 9600, 0.08, prev_results=df_results)
df_results = try_4(fraudTrain, 10, 9600, 0.06, prev_results=df_results)
df_results = try_4(fraudTrain, 10, 9600, 0.04, prev_results=df_results)
df_results = try_4(fraudTrain, 10, 9600, 0.02, prev_results=df_results)
df_results
= datetime.datetime.fromtimestamp(time.time()).strftime('%Y%m%d-%H%M%S')
ymdhms f'../results/{ymdhms}-proposed.csv',index=False)
df_results.to_csv(
df_results
model | time | acc | pre | rec | f1 | auc | graph_based | method | throw_rate | train_size | train_cols | train_frate | test_size | test_frate | hyper_params | theta | gamma | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | GCN | None | 0.961663 | 0.114621 | 0.841060 | 0.201747 | 0.932483 | True | Proposed | 0.132012 | 9009 | amt | 0.499389 | 26215 | 0.005760 | None | 9600 | 0.20 |
1 | GCN | None | 0.959565 | 0.117140 | 0.795322 | 0.204204 | 0.911232 | True | Proposed | 0.133261 | 9009 | amt | 0.502054 | 26215 | 0.006523 | None | 9600 | 0.18 |
2 | GCN | None | 0.949304 | 0.087018 | 0.815789 | 0.157261 | 0.926008 | True | Proposed | 0.131586 | 9009 | amt | 0.497613 | 26215 | 0.005798 | None | 9600 | 0.16 |
3 | GCN | None | 0.950906 | 0.085199 | 0.855072 | 0.154957 | 0.939830 | True | Proposed | 0.131189 | 9009 | amt | 0.497613 | 26215 | 0.005264 | None | 9600 | 0.14 |
4 | GCN | None | 0.961434 | 0.115108 | 0.825806 | 0.202052 | 0.919188 | True | Proposed | 0.131927 | 9009 | amt | 0.498612 | 26215 | 0.005913 | None | 9600 | 0.12 |
5 | GCN | None | 0.963418 | 0.115163 | 0.764331 | 0.200167 | 0.911616 | True | Proposed | 0.132239 | 9009 | amt | 0.499611 | 26215 | 0.005989 | None | 9600 | 0.10 |
6 | GCN | None | 0.964944 | 0.132425 | 0.829268 | 0.228380 | 0.939729 | True | Proposed | 0.133489 | 9009 | amt | 0.503719 | 26215 | 0.006256 | None | 9600 | 0.08 |
7 | GCN | None | 0.953347 | 0.087356 | 0.780822 | 0.157133 | 0.921464 | True | Proposed | 0.131189 | 9009 | amt | 0.496725 | 26215 | 0.005569 | None | 9600 | 0.06 |
8 | GCN | None | 0.949456 | 0.088090 | 0.801282 | 0.158730 | 0.927804 | True | Proposed | 0.132921 | 9009 | amt | 0.502387 | 26215 | 0.005951 | None | 9600 | 0.04 |
9 | GCN | None | 0.956857 | 0.105777 | 0.802469 | 0.186916 | 0.921032 | True | Proposed | 0.133630 | 9009 | amt | 0.504496 | 26215 | 0.006180 | None | 9600 | 0.02 |